skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeinalian, Mahmoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove that the simplicial cocommutative coalgebra of singular chains on a connected topological space determines the homotopy type rationally and one prime at a time, without imposing any restriction on the fundamental group. In particular, the fundamental group and the homology groups with coefficients in arbitrary local systems of vector spaces are completely determined by the natural algebraic structure of the chains. The algebraic structure is presented as the class of the simplicial cocommutative coalgebra of chains under a notion of weak equivalence induced by a functor from coalgebras to algebras coined by Adams as the cobar construction. The fundamental group is determined by a quadratic equation on the zeroth homology of the cobar construction of the normalized chains which involves Steenrod’s chain homotopies for cocommutativity of the coproduct. The homology groups with local coefficients are modeled by an algebraic analog of the universal cover which is invariant under our notion of weak equivalence. We conjecture that the integral homotopy type is also determined by the simplicial coalgebra of integral chains, which we prove when the universal cover is of finite type. 
    more » « less